SDM630 MCT V2 Series ee Phase Multifunction Energy N

DIN RAIL SMART METER FOR SINGLE AND THREE PHASE **ELECTRICAL SYSTEMS**

User Manual V4.9

Warni	ngs
Importa Mainten informal procedu	nt Safety Information is contained in the ance section. Familiarize yourself with this tion before attempting installation or other res. Symbols used in this document:
	Risk of Danger: These instructions contain important safety information. Read them before starting installation or servicing of the equipment.
4	Caution: Risk of Electric Shock

1.Introduction

This document provides operating, maintenance and installation instructions. This unit measures and displays the characteristics of single phase two wire(1p2w),three phase three wire(3p3w) and three phase four wire(3p4w) networks.The measuring parameters include voltage(V), frequency(Hz),current(A),power(kW/kVA/kVAr),import, export and total Energy(kWh/kVArh).The unit can also measures Maximum demand of current and power. This is measured over preset periods of up to 60 minutes.

This unit is a 1A or 5A current transformer operated and can be configured to work with a wide range of CTs. Built-in pulse and Modbus or M-Bus outputs.Configuration is password protected.

This unit can be powered by a separate auxiliary (AC or DC) supply. Alternatively it can be powered from the monitored supply by linking the voltage reference and neutral reference to terminals 5 and 6 (Please refer to wiring diagram).

1.1 Unit Characteristics

This series includes 4 models

SDM630MCT V2	SDM630MCT-Mbus V2	SDM630MCT-2T V2	SDM630MCT-2T-Mbus
Multi-parameter measurement	Multi-parameter measurement	Multi-parameter measurement	Multi-parameter measurement
Single Tariff	Single Tariff	2 Tariffs (dual source)	2 Tariffs (dual source)
RS485 Modbus	M-Bus EN13757-3	RS485 Modbus	M-Bus EN13757-3

1.2 RS485 Modbus RTU / M-Bus

SDM630MCT V2 and SDM630MCT-2T V2 have a RS485 port with Modbus RTU protocol. SDM630MCT-MbusV2 and SDM630MCT-2T-Mbus has a M-Bus port complying with EN13757-3. Refers to section 4.2

1.3 Current Transformer Primary Current

SDM630MCT V2 Series is CT operated. you will need to set the correct CT rate. Refers to section 4.3

1.4 Pulse Output

Two pulse outputs that pulse measured active and reactive energy. The Pulse 2 constant for active energy is fixed at 3200 imp/kWh. The pulse output 1 is configurable. Refers to section 4.5

2.Start Up Screens

3.1 Voltage and Current

Each successive press of the $\mathbb{W}_{\mathrm{sc}}^{\triangleleft}$ button selects a new parameter:

3.2 Frequency and Power Factor and Demand

Each successive press of the x h button selects a new range

≥ 00.00 Hz 0.999 pf	Frequency and Power Factor (total).
L ¹ (J.999) L ² (J.999) L ³ (J.999) PF	Power Factor of each phase.
L ¹ D.O D O O A L ² D.O O O O A L ³ D.O O O O	Maximum Current Demand.
©.000 ^{kw} ≥	Maximum Power Demand.

3.3 Power Each successive press of the button selects a new range

	ballon boloolo a now range
L ¹ 0.000 KW L ² 0.000 L ³ 0.000	Instantaneous Active Power in kW.
L ¹ 0.000 kVAr L ² 0.000 kVAr	Instantaneous Reactive Power in kVAr.
L ¹ 0.000 L ² 0.000 L ³ 0.000 KVA	Instantaneous Volt-Amps in KVA.
0.000 ^{kW} ≥ 0.000 ^{kVA} 0.000 ^{kVA}	Total kW, kVAr, kVA.

	Import Reactive Energy in kVArh.
	Export Reactive Energy in kVArh.
T (ruf) ^{kwn} 0000 000.1	T1 Active Energy in kWh *For SDM630MCT-2T and SDM630MCT-2T-Mbus only
T 2 KWh 0000 000.0	T2 Active Energy in kWh *For SDM630MCT-2T and SDM630MCT-2T-Mbus only
Tirun	T1 Reactive Energy in kVArh
0000 ^{kVArh}	SDM630MCT-2T-Mbus only

4.Set Up

To enter set-up mode, press the \mathbb{R} button for 3 seconds until the password screen appears

PR55	Setting up is password- protected. The user should enter the correct password
0000	(default '1000') before processing.
рясс	If an incorrect password is entered, the display will show:
Err	PASS Err

To exit setting-up mode, press U/L repeatedly until the measurement screen is restored

4.1 Set-up Entry Methods

Some menu items, such as password and CT, require a four-digit number entry while others, such as supply system, require selection from a number of menu options

4.1.1 Menu Option Selection

1. Use the U/I_{m}^{4} and P^{4} buttons to scroll through the different options of the set up menu

- 2. Press E 🕹 to confirm your selection
- 3. If an item flashes, then it can be adjusted by the \mathbf{x}^{\perp} and P buttons.
- 4. Having selected an option from the current layer, press $_{\rm E}$ \gtrsim to confirm your selection.
- 5. Having completed a parameter setting, press U1 to return to a higher menu level. You will be able to use the χ \wedge and **p** buttons for further menu selection.
- 6. On completion of all setting-up, press U/I repeatedly until the measurement screen is restored.

4.1.2 Number Entry Procedure

When setting up the unit, some screens require the entering of a number. In particular, on entry to the setting up section, a password must be entered. Digits are set individually, from left to right. The procedure is as follows:

- 1. The current digit to be set flashes and is set using the \mathtt{x} * and P buttons.
- 2. Press E L to confirm each digit setting.

Procedure, press E button to confirm the setting and press U/I button to return the main set-up menu.

4.2.2 Mbus Secondary Address

- 1d - 9999 9999	Secondary address: $00\ 00\ 00\ 1\ to\ 99\ 99\ 99\ 99$ From the set-up menu, use $\underline{u} \land$ and $\underline{p} \checkmark$ buttons to find the setting page.
- 12 - 9999 9999	Press E C to enter the selection routine. The current setting will flash.
- 18 - 1 193 8 1 1 1	Use x and p v buttons to set the secondary address

Press $\mathbf{E} \stackrel{\scriptstyle{\triangleleft}}{\leftarrow}$ to confirm the setting and press $\mathbf{U}_{\infty}^{\mathsf{I}}$ to return to the main set up menu.

4.2.3 Baud Rate

Baud rate range for Modbus RTU: 2.4k, 4.8k, 9.6k, 19.2k, 38.4k. For Mbus: 0.3k, 0.6k, 2.4k, 4.8k, 9.6k.

582 5807 9.5 *	From the set-up menu, use $\mathbf{u} \triangleq$ and $\mathbf{p} \neq$ buttons to select the baud rate option.
585 58114 <mark>9.6</mark> *	Press E L to enter the selection routine. The current setting will flash.
582 5803 38.4 *	Use M and P buttons to choose baud rate 2.4k, 4.8k, 9.6k, 19.2k, 38.4k

Press $\mathbf{E} \stackrel{<}{\leftarrow}$ to confirm the setting and press \mathbf{W}^{I} to return to the main set-up menu.

4.2.4 Parity		
582 P871 8580	From the set-up menu, use $\underline{u} \stackrel{\bullet}{\rightarrow}$ and $\underline{p} \stackrel{\bullet}{\rightarrow}$ buttons to select the parity option.	
SEE PRri EuEN	Press E L to enter the selection routine. The current setting will flash.	
582 PR-1 NDNE	Use X and P buttons to choose parity (EVEN / ODD / NONE (default)).	

Press $E \stackrel{>}{\leftarrow}$ to confirm the setting and press U/I_{sc}^{\checkmark} to return to the main set-up menu

4.2.5 Stop Bits

588 580P 2	From the set-up menu, use
585	Press E La to enter the

The interface performs a self-test and indicates the result if the test passes

*After a short delay, the screen will display active energy measurements

3.Measurements

The buttons operate as follows

Selects the Voltage and Current display screens. In Set-up Mode, this is the "Left" or "Back" button.

Select the Frequency and Power factor display screens. In Set-up Mode, this is the "Up" button.

Select the Power display screens. In Setup Mode, this is the "Down" button.

Select the Energy display screens. In Setup mode, this is the "Enter" or "Right" button.

3. After setting the last digit, press \mathbb{W}_{sc} to exit the number setting routine.

4.2 Communication

4.2.1 RS485 / Mbus Primary Address

(The range is from 001 to 247 for Modbus and 001 to 250 for Mbus)

Press $\mathbf{E} \stackrel{>}{\rightleftharpoons}$ to confirm the setting and press $\mathbf{W}_{\mathbf{n}}$ to return to the main set-up menu.

4.3 CT

The CT option sets the secondary current (CT2 1A or 5A) of the current transformer (CT) that wires to the meter.

Set CT rate value Press B to enter the CT rate setting screen. The range is from 0001

For example, if using a 100/5A current transformer you will enter 0020, as you need to divide the primary by the secondary to get the ratio (CT rate).

* Please note for the MID approved version device, you will only have one opportunity to set the CT rate.

to 2000.

4.4 PT

The PT option sets the secondary voltage (PT2 100 to 500V) of the voltage transformer (PT) that may be connected to the meter

5EE PE2 400	Use A and P buttons to select the PT option. The screen will show the voltage PT secondary voltage value. The default value is 400V.
582 P22 400	Secondary PT setting Press E to enter the PT secondary voltage selection routine. The range is from 100 to 500V.
РЕ 5 ЯЕЕ 000 I	Set PT rate value Press \mathbb{R}^{2} to enter the PT rate screen. The range is from 0001 to 2000.

For example, if set the rate to 100, it means the primary voltage equals secondary voltage x100.

4.5 Pulse Output

The option allows you to configure the pulse output 1. The output can be set to provide a pulse for a defined amount of energy active or reactive. Use this section to set up the pulse output—Units: kWh, kVArh

Press $\mathbf{E} \stackrel{*}{\rightarrowtail}$ to confirm the setting and press $\mathbf{W}_{\mathbf{n}}^{\perp}$ to return to the main set up menu.

4.5.1 Pulse Rate

Use this to set the energy represented by each pulse. Rate can be set to 1 pulse per 0.01/0.1k/1/10/100/1000kWh/kVArh.

(It shows 1 impulse = 10kWh/kVArh)

Use A and b buttons to choose pulse rate.

Use 🗽 🔺 and P 🎽 buttons to choose pulse width.

Press \mathbb{B}^{1} to confirm the setting and press \mathbb{W}_{∞}^{1} to return to the main set-up menu.

4.6 DIT Demand Integration Time

This sets the period in minutes over which the current and power readings are integrated for maximum demand measurement. The options are: 0, 5, 8, 10,15, 20, 30, 60 minutes.

Use $\mathbf{M}^{\mathbf{A}}$ and $\mathbf{P}^{\mathbf{V}}$ buttons to choose the selection.

Press **E** to confirm the setting and press \mathbb{V}_{∞}^{1} to return to the main set-up menu.

4.7 Backlit Set-up

The meter provides a function to set the backlit lasting time(0/5/10/30/60/120 minutes). Option 0 means the backlit always on here.

Press \mathbb{R}^{2} to confirm the setting and press $\mathbb{U}/\mathbb{L}^{2}$ to return to the main set-up menu.

4.8 Supply System

The unit has a default setting of 3Phase 4wire (3P4). Use this section to set the type of electrical system.

Press 🛃 to confirm the selection.

Press $\mathbb{W}_{\mathbb{Z}}^{\ast}$ to exit the system selection routine and return to the menu.

4.9 CLR

The meter provides a function to reset the maximum demand value of current and power.

Press \mathbb{W}^{-} to exit the number setting routine and return to the Set-up menu.

4.11 CT Reversal

If the CT connections are incorrectly wired, they can be reversed through the set-up menu:

SEE SYS Cont	Use the X and P v buttons to select the menu option. Hold the E button to view the sub-menu.
582 18 Frd	This screen will display, you can change Forward to Reverse on each individual CT connection.
581 18 780	Hold the button to confirm your adjustment. You can then move on to IB or IC using the and p buttons.

Hold the U/I_{ac}^{\prec} button for 3 seconds to exit the set up menu.

5.Specifications 5.1 Measured Parameters

The unit can monitor and display the following parameters of a single phase two wire(1p2w), three phase three wire(3p3w) or three phase four wire(3p4w) system.

5.1.1 Voltage and Current

- Phase to neutral voltages 100 to 276V a.c. (not for 3p3w
- supplies).
 Voltages between phases 173 to 480V a.c. (3p supplies only).
- Percentage total voltage harmonic distortion (THD%) for each phase to N (not for 3p3w supplies).
- Percentage voltage THD% between phases (three phase supplies only).
- Current THD% for each phase

5.1.2 Power Factor and Frequency and Max. Demand

- Frequency in Hz
- Power factor
 - Instantaneous power:
 - Power 0 to 3600 MW
 - Reactive power 0 to 3600 MVAr
 - Volt-amps 0 to 3600 MVA
 Maximum demanded power sin
 - Maximum demanded power since last reset
 Maximum neutral current demand, since the last reset (for three phase supplies only)

5.1.3 Energy Measurements

 • Import/Export active energy
 0 to 9999999.9 kWh

 • Import/Export reactive energy
 0 to 9999999.9 kWh

 • Total active energy
 0 to 9999999.9 kWh

 • Total reactive energy
 0 to 9999999.9 kWh

5.2 Measured Inputs

Voltage inputs through 4-way fixed connector with 2.5mm² stranded wire capacity. single phase two wire(1p2w), three phase three wire(3p3w) or three phase four wire(3p4w) unbalanced. Line frequency measured from L1 voltage or L3 voltage.

Three current inputs (six physical terminals) with 2.5mm² stranded wire capacity for connection of external CTs. Nominal rated input current 5A or 1A a.c. RMS.

5.3 AccuracyVoltage

Current

0.5% of range maximum 0.5% of nominal 0.2% of mid-frequency

±1% of range maximum

±1% of range maximum

±1% of range maximum

Class 1 IEC 62053-21

Class 2 IEC 62053-23

1% up to 31st harmonic

1s, typical, to >99% of final reading, at 50 Hz.

1% of unity (0.01)

5.6 Reference Conditions of Influence Quantities

Influence Quantities are variables that affect measurement errors to a minor degree. Accuracy is verified under nominal value (within the specified tolerance) of these conditions.

Ambient temperature	23°C ±2°C
Input frequency	50 or 60Hz ±2%
Input waveform	Sinusoidal (distortion
	factor < 0.005)
Auxiliary supply voltage	Nominal ±1%
Auxiliary supply frequency	Nominal ±1%
Auxiliary supply waveform (if AC)	Sinusoidal (distortion
	factor < 0.05)
Magnetic field of external origin	Terrestrial flux

5.7 Environment

 Operating temperature 	-25°C to +55°C*
Storage temperature	-40°C to +70°C*
Relative humidity	0 to 95%, non-condensing
Altitude	Up to 2000m
Warm-up time	5s
Vibration	10Hz to 50Hz, IEC
	60068-2-6, 2g
Shock	30g in 3 planes

* Maximum operating and storage temperatures are in the context of typical daily and seasonal variation.

5.8 Mechanics

DIN rail dimensions	72 x 94.5 mm (WxH) per DIN 43880
Mounting	DIN rail 35mm
 Ingress protection 	IP51 (indoor)
Material	Self-extinguishing UL94 V-0

5.9 Declaration of Conformity(for the MID approved version meter only)

We Zhejiang Eastron Electronic Co.,Ltd. Declare under our sole responsibility as the manufacturer that the poly phase multifuntion electrical energy meter "SDM630MCT V2 Serise" correspond to the production model described in the EU -type examination certificate and to the requirements of the Directive 2014/32/EU EU type examination certificate number 0120/SGS0142. Identification number of the NB0598.

6.Dimensions

7.Installation

The wiring diagram of SDM630MCT V2 series has little difference from different models. please make sure the wiring is correct before turning on power of the meter.

Current and Voltage Inputs

Definitions of Other Terminals

Press **E** to confirm the setting and press **UI** to return to the main set up menu.

4.5.2 Pulse Duration

The energy monitored can be active or reactive and the pulse width can be set as 200, 100 or 60ms.

(It shows pulse width of 200ms)

the main set-up menu.

4.10 Change Password

Frequency
Power factor
Active power (W)
Reactive power (VAr)
Apparent power (VA)
Active energy (Wh)
Reactive energy (VArh)
Total harmonic distortion
Response time to step input

5.4 Auxiliary Supply

Two-way fixed connector with 2.5mm² stranded wire capacity. 85 to 275V a.c. 50/60Hz ±10% or 120V to 380V d.c. ±20%. Consumption < 10W.

5.5 Interfaces for External Monitoring

Three interfaces are provided:

- RS485/Mbus communication channel that can be programmed via protocol remotely.
- Pulse output(Pulse 1) indicating real-time measured energy (configurable)
- Pulse output(Pulse 2) 3200imp/kWh (non-configurable)

The Modbus configuration (baud rate etc.) and the pulse output assignments (kWh/kVArh) are configured through the set-up screens.

SDM630MCT-2T V2	
AUXILIARY SUPPLY 2 TARIFF: 5 6 7 8 4 4 4 L N 230VAC	S 1 JL 2 RS485 9 10 11 12 13 14 + - + GND B A
SDM630MCT-Mbus V2	
AUXILIARY POWER SUPPLY OUTPUT [5]6] [7]8 L N L N	1 Л 2 1 2 9 10 11 12 13 14 + - + M-Bus
SDM630MCT-2T-Mbus	
AUXILIARY SUPPLY 56 78 L N 230VAC	S 1 n 2 1 2 9 10 11 12 13 14 + - + M-Bus

	RS485 / Pulse / 2T	0.5~2.5mm²
Terminals Capacity	Load	1.5~2.5mm ²
Sarow Targua	RS485 / Pulse / 2T	0.4Nm
Screw lorque	Load	0.4Nm

